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SUMMARY

This study investigates a new energy relaxation method designed to capture the dynamics of unsteady,
viscous, real gas �ows governed by the compressible Navier–Stokes equations. We focus on real gas
models accounting for inelastic molecular collisions and yielding temperature-dependent heat capacities.
The relaxed Navier–Stokes equations are discretized using a mixed �nite volume=�nite element method
and a high-order time integration scheme. The accuracy of the energy relaxation method is investigated
on three test problems of increasing complexity: the advection of a periodic set of vortices, the inter-
action of a temperature spot with a weak shock, and �nally, the interaction of a re�ected shock with
its trailing boundary layer in a shock tube. In all cases, the method is validated against benchmark
solutions and the numerical errors resulting from both discretization and energy relaxation are assessed
independently. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: Navier–Stokes; real gas; computational �uid dynamics; energy relaxation method; vorti-
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1. INTRODUCTION

Many engineering applications involve unsteady, viscous �ows governed by the compressible
Navier–Stokes equations. In these equations, the vector of conservative variables has compo-
nents (�; �U; E) where � is the density, U the velocity vector in the physical space Rd, d the
space dimension, E= 1

2 �U
2 + �� the total energy per unit volume, and � the speci�c internal

energy. It is well-known that the convective and di�usive �uxes in the compressible Navier–
Stokes equations involve two additional quantities, namely the pressure p and the temperature
T , and that the governing equations are closed upon expressing these latter quantities in terms
of the conservative variables by means of a suitable thermodynamic model.
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The simplest thermodynamic model is the thermically perfect and calori�cally perfect gas
model (TPCP, also termed the polytropic ideal gas model) in which

p=(� − 1)��=�RT (1)

where �¿1 and R are given constants. The TPCP gas model has been often considered
in applications and several �nite volume solvers dedicated to TPCP gas �ows have been
developed over the last decade. Because of the substantial development e�orts devoted to
these codes, most of them may be considered as fairly robust and computationally e�ective.
However, the TPCP gas model is only reasonable for monatomic gases. For polyatomic

gases, the thermodynamic model must account for inelastic energy transfer in microscopic
collisions. This e�ect becomes more pronounced at high temperatures and leads to a tem-
perature dependency of the heat capacity. A more appropriate thermodynamic model is then
the thermically perfect gas model (TP) for which the ideal gas law p=�RT still holds, but
the speci�c internal energy � is a non-linear function of the temperature. Further complexi-
ties arise in high pressure gas �ows since the pressure becomes a non-linear function of the
density. A gas requiring a more complex thermodynamic model than the TPCP one will be
termed a real gas. In this work, we shall be concerned with polyatomic, viscous gas �ows
with pressures and temperatures up to 107 Pa and 2000 K, respectively. As discussed in Ref-
erence [1], for most gases at such conditions, the TP gas model remains appropriate and
this model is indeed often considered in applications involving polyatomic gas �ows over a
relatively wide pressure and temperature range. We shall therefore keep this approach in the
present work. One interesting feature of the TP gas model is that it may be recovered along
with the compressible Navier–Stokes equations from the kinetic theory of dilute polyatomic
gases and the �rst-order Enskog–Chapman expansion.
From a numerical viewpoint, the main di�culty when dealing with real gas �ows is that

it is not straightforward to extend �nite volume codes designed for TPCP �ows since the
Riemann solver directly relies on the TPCP gas model. Previous work aimed at extending
exact or approximate Riemann solvers includes References [2–4]. Most of these extensions are
tailored to handle speci�c applications and often involve sizeable computational overheads with
respect to the TPCP case. Alternatively, an appealing approach to tackle real gas �ows is to
consider a relaxation method. Such methods have been introduced for the numerical simulation
of hyperbolic systems in References [5, 6]. Recently, an energy relaxation method has been
introduced for the Euler equations [7] and then extended to the Navier–Stokes equations [8]. In
this method, one considers a �ctitious TPCP gas with speci�c internal energy �1. For inviscid
�ows, the relaxed equations consist of the Euler equations for the �ctitious gas coupled with a
transport equation for the perturbation �2 = �− �1. For viscous �ows, a suitable decomposition
of the di�usion �uxes must also be speci�ed [8]. The relaxation method presents several
attractive features. Owing to its consistency property, the Euler or Navier–Stokes equations
for the real gas are recovered in the limit of in�nite relaxation. Furthermore, under some
sub-characteristic conditions which will be restated hereafter, the relaxation method satis�es a
stability property in the sense that the sign of a suitable entropy production during relaxation
is controlled. From a practical viewpoint, the key advantage of the energy relaxation method
is that TPCP Navier–Stokes codes may be used with very little modi�cations to simulate real
gas �ows.
This work’s principal aim is to validate numerically the energy relaxation method derived

theoretically in Reference [8] for Navier–Stokes �ows. We investigate three test cases for
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which highly accurate benchmark solutions are available [9, 10]. The �rst one, dealing with
the advection of a Taylor vortex in a periodic �ow, is an elementary test case in which the
temperature is uniform. It provides a �rst assessment of dissipative errors. The second one
concerns the interaction between a temperature spot and a weak shock. It enlightens the capa-
bility of the energy relaxation method to provide an accurate splitting of the di�usive �uxes
in non-isothermal �ows and also to capture the mechanism of vorticity generation through the
baroclinic torque. In this second test case, the non-linearities present in the thermodynamic
model have a moderate impact on the �ow dynamics. The last test case investigates the in-
teraction between the boundary layer generated behind a strong shock propagating in a shock
tube and the re�ected wave produced once the shock has reached the end wall of the tube.
This last test case is particularly challenging to validate the accuracy of the relaxation method
because inelastic energy transfer has a strong impact on the �ow dynamics. The benchmark
solutions in References [9, 10] correspond to TPCP gas �ows. We will therefore validate
the relaxation method by �rst considering such gases and then real gases endowed with more
general thermodynamic models. For this second step, we shall consider temperature-dependent
heat capacities resulting either from polynomial �ts of experimental values or from a non-
linear model involving a vibrational temperature. Similar thermodynamic models have been
considered in References [11, 12] for the numerical validation of an energy relaxation method
applied to the Euler equations.
The key features of the energy relaxation method derived in Reference [8] for the Navier–

Stokes equations are brie�y restated in Section 2. Numerical methods are described in
Section 3. Numerical results are discussed in Section 4. Conclusions are drawn in Section 5.

2. THE ENERGY RELAXATION METHOD

The compressible Navier–Stokes equations express the conservation of mass, momentum, and
energy in the form

@tW +
∑

16i6d
@iF

c
i (W ) +

∑
16i6d

@iF
d

i (W )=0 (2)

where @t and @i denote, respectively, the partial derivative with respect to time and the ith spa-
tial Cartesian co-ordinate, and W =(�; �U; E)T ∈Rd+2 is the vector of conservative variables.
The convective (or Euler) �uxes Fc

i (W ) are given by

Fc
i (W )= (�ui; (�uiuj + p�ij)16j6d; (E + p)ui)T (3)

where �ij is the Kronecker symbol and (u1; : : : ; ud)T the Cartesian co-ordinates of the velocity
vector U . The di�usive �uxes Fd

i (W ) may be expressed as

Fd
i (W )=

(
0; (�ij)16j6d; qi +

∑
16j6d

�ijuj

)T
(4)

where �=(�ij)16i; j6d is the momentum �ux tensor (−� is the viscous stress tensor) given
by

�=−�(∇U +∇U T) + 2
3 �(∇ · U )I (5)
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I being the identity matrix and ∇=(@1; : : : ; @d)T the gradient operator. Furthermore, q=
(qi)16i6d is the heat �ux vector given by

q=−�∇T (6)

The shear viscosity � and the thermal conductivity � are positive, and for the sake of sim-
plicity, we shall assume that these quantities are constant.
The energy relaxation method derived in Reference [8] is valid within a rather general

thermodynamic framework which is brie�y restated here. Letting �=1=� be the dilatation and
�= �E−U 2=2 be the speci�c internal energy, we assume that there exists a function 	 :=	(�; �)
called the speci�c (mathematical) entropy, which is strictly decreasing and strictly convex in
the variables (�; �). The pressure and the temperature are then expressed as functions of (�; �)
via Gibbs relations

T (�; �)=− 1
@�; �	(�; �)

; p(�; �)=
@�; �	(�; �)
@�; �	(�; �)

(7)

with obvious notation for the partial derivatives. For any �xed �¿0, we assume that the
pressure p :=p(�; �) is strictly increasing in � with p(�; 0)=0 and p(�;∞)=∞. The function
� �→p(�; �) may then be inverted over (0;∞). This assumption obviously holds for TP gases.
For TPCP gases, the speci�c entropy is given, up to an additive constant, by

	(�; �)= cv log(��−1�) (8)

where cv=R=(�− 1) is the constant volume speci�c heat capacity. For TP gases, the speci�c
internal energy is a non-linear function of the temperature and therefore, the heat capacity
cv(T )= �′(T ) depends on the temperature. The speci�c entropy is then given, up to an additive
constant, by

	(�; �)=
∫ T (�) cv(t)

t
dt + R log � (9)

We also introduce the adiabatic exponent �(T )=1 + R=cv(T ). For polyatomic gases, one has
�(T )∈ (1; 1:4], whereas for monatomic gases, the adiabatic exponent is independent of the
temperature and equal to 5

3 .
In order to derive the relaxed Navier–Stokes equations, consider a �ctitious gas with the

simple entropy 	1 :=	1(�; �1) whence we deduce using Gibbs relations the simple pressure and
temperature laws p1 :=p1(�; �1) and T1 :=T1(�; �1). For all practical purposes, the �ctitious gas
is TPCP and we denote by �1 its (constant) adiabatic exponent. We assume that �1 satis�es
the subcharacteristic conditions [7]

�1¿ sup
�; �

�(@�; �p(�; �)− @�; � logp(�; �))

�1¿ sup
�; �

�@�; �p(�; �) + 1
(10)

In the case where the real gas is TP, these conditions simply reduce to

�1¿ sup
T

�(T ) (11)
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One easily shows that there exists a function F de�ned over R2+ and such that for (�; �1) ∈
R2+, we have p(�; �1 +F(�; �1))=p1(�; �1) [7]. Furthermore, there exist two functions, T and
E1, of (	1; �2) such that T(	1; �2)= � and E1(	1; �2)= �1 if 	1 =	1(�; �1) and �2 =F(�; �1). It
is then possible to introduce the global entropy functional

�(�; �1; �2)=	(T(	1; �2);E1(	1; �2) + �2) (12)

which is compatible with the speci�c entropy of the real gas at equilibrium, i.e. if �2 =F(�; �1),
we have �(�; �1; �2)=	(�; �1+�2). Finally, letting 
 := 
(�; �1) be an arbitrary function of (�; �1)
taking its values in [0; 1], we introduce the following functions of (�; �1; �2):

�(�; �1; �2)=−((1− 
)@	1 ; �2�(	1; �2)@�1 ; �	1(�; �1) + 
@�2 ; 	1�(	1; �2))
−1

�(�; �1; �2)= 
+ (1− 
)
@�1 ; �	1(�; �1)

@�1 ; �	1(T(	1; �2);E1(	1; �2))

(13)

with 
 and 	1 evaluated at (�; �1). Note that � has dimensions of a temperature whereas � is
dimensionless.
Using the above notation, the relaxed Navier–Stokes equations may be written as [8]

@tW+
∑

16i6d
@iF

c∗
i (W) +

∑
16i6d

@iF
d∗

i (W) + �(W)=0 (14)

where W=(�; �U; E1; ��2)T ∈Rd+3 is the vector of conservative variables. The convective
�uxes Fc∗

i (W) are given by

Fc∗
i (W)= (�ui; (�uiuj + p1�ij)16j6d; (E + p1)ui; �ui�2)T (15)

with p1 :=p1(�; �1) and ��1 =E1 − 1
2 �U

2. The di�usive �uxes Fd∗
i (W) may be expressed as

Fd∗
i (W)=

(
0; (�ij)16j6d; q1; i +

∑
16j6d

�ijuj; 0

)T
(16)

where q1 = (q1; i)16i6d is the heat �ux vector associated with the �ctitious gas, i.e. q1 =−�∇T1.
Finally, the source term is given by

�(W)= (0; (0)16i6d;��1 ;−��1 −��2)
T (17)

with

��1 = 
(� :∇U +∇ · q1) + ��(�2 − F(�; �1))

��2 =�∇ · q2
(18)

Here, �∈R is the relaxation parameter and the heat �ux perturbation q2 is de�ned as

q2 =Q− q1 with Q=−�∇� (19)

The relaxed Navier–Stokes equations (14) thus consist of the Navier–Stokes equations for
the �ctitious gas (up to a weighting coe�cient in the source term of the energy equation)
coupled with a transport equation for the energy perturbation �2. The parameter 
 acts as
a weighting parameter to distribute the di�usive contribution � :∇U + ∇·q1 between the
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balance equations for E1 and ��2. System (14) is endowed with important properties proven
in Reference [8]:

• Consistency: at equilibrium, i.e. in the limit �→ ∞, the vector W =(�; �U; E1 + ��2)
satis�es the Navier–Stokes system (2) with the pressure and temperature laws of the
real gas;

• Global stability: assuming thatW is smooth and that (�1; �2)∈R2+, the volumetric entropy
S(W)=��(	1(�; �1); �2) satis�es for all � the balance equation

@tS(W) +∇ · (US(W))− ∇ ·
(
Q

�

)
= �!e +

� :∇U
�

+
Q · ∇�
�2

60 (20)

the three terms in the r.h.s. being non-positive independently. The entropy source term
!e represents the entropy production due to the relaxation process and is given explicitly
in Reference [7]. Note that the entropy balance equation (20) indicates that the function
� acts as a global temperature for the relaxed system (14);

• Asymptotic stability around equilibrium states: assuming that the real gas is TP and
letting


 := 
(�1)=
�1 − �(T1)
�1 − 1 with T1 =

R
�1 − 1 �1 (21)

the vector W =(�; �U; E1 + ��2) is the solution, up to �rst order in 1
� , of the original

Navier–Stokes equations (2) plus a dissipative perturbation. Details are given in Refer-
ence [8].

3. NUMERICAL METHODS

The relaxation method for the Navier–Stokes equations may be implemented using the follow-
ing three-step procedure. A similar algorithm has been investigated numerically in References
[11, 12] for the relaxed Euler equations.

• Step 1: given an approximate solution to the original Navier–Stokes equations (2) at a
discrete time t n, Wn=(�n; �nUn; En), one evaluates �n, �n, the pressure pn=p(�n; �n), the
internal energies �n1 =pn=((�1−1)�n) and �n2 = �n−�n1 and the temperature T

n
1 = (�1−1)�n1 =R.

• Step 2: the relaxed Navier–Stokes equations (14) are integrated in time from t n to t n+1

in the equilibrium limit (�→ ∞). When the real gas is TP and the �ctitious one TPCP,
one easily checks that their temperatures coincide at equilibrium so that we may take
�=1 and q2 = 0. We thus have ��2 = 0 and the source term in (14) is given by

�(W)= (0; (0)16i6d; 
(� :∇U +∇ · q1);−
(� :∇U +∇ · q1))T (22)

The weighting coe�cient 
 is evaluated using (21).
• Step 3: Wn+1 is obtained by projection: �n+1 =�n+1−, (�U )n+1 = (�U )n+1−, En+1 =En+1−

1
+(��2)n+1− where the superscript n+1− refers to the numerical values obtained at Step 2.

In Step 2, the relaxed Navier–Stokes equations can be discretized in space and time with
any suitable numerical method. In this work, we consider a mixed �nite volume=�nite element
method on unstructured, conforming triangulations. The convective �uxes and the source term
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Figure 1. Finite element cell Tv centred on vertex v and consisting here of 5 mesh
triangles; �nite volume cell Cv (�lled area).

are approximated using a �nite volume method whereas the di�usive �uxes are approximated
using P1 Lagrange �nite elements. Let v be a mesh vertex, Tv the set of triangles to which
v belongs, Nv the �nite element nodal function associated with vertex v (the continuous,
piecewise a�ne function with support Tv and such that Nv(v) = 1) and let Cv the �nite
volume cell for vertex v (see Figure 1). The �nite volume=�nite element discretization of the
relaxed Navier–Stokes equations may be written as

d
dt

∫
Cv

W+
∫
@Cv

∑
16i6d

Fc∗
i (W)ni −

∫
Tv

∑
16i6d

Fd∗
i (W)@iNv +

∫
Cv

�(W)=0 (23)

up to di�usive �ux boundary contributions.
The convective �uxes along the interface @Cv are evaluated using a Roe scheme of order

3 owing to a combination of the MUSCL method and a �-scheme with �= 1
2 or

1
3 [13].

At a cell interface between two vertices i and j, the Roe scheme is applied to high-order
interpolations Wij and Wji of W on both sides of the interface given by

Wij = Wi + 1
2(1− 2�)(Wj − Wi) + �∇Wi · ĩj

where ∇Wi is the nodal-average gradient of W at vertex i. For the third test case presented
below, a recent limiter designed for the Euler equations to yield third- and fourth-order accu-
racy in conjunction with the �-scheme and the MUSCL method has been implemented [14].
Set ∇W up

ij · ĩj=2∇Wi · ĩj − (Wj − Wi) and ∇W up
ji · j̃i=2∇Wj · j̃i − (Wi − Wj) and de�ne the

ratios

Ri=
Wj − Wi

∇W up
ij · ĩj and Rj=

W up
ji · j̃i

Wi − Wj
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The third-order upwind scheme can be written as Wij=Wi+ 1
2  (Ri)∇W up

ij · ĩj where the limiter
function is given by  (R)= (1=3 + 2R=3)\ (R) with

’(r)=




0 if r60

3r4 − 7r3 + 3r2 + 3r
2

if 06r61

3r2 − 6r + 19
r3 − 3r + 18 if 16r

We also consider a fourth-order centred scheme in which Wij=Wi+ 1
2  (Ri; Rj)(Wj−Wi) where

the limiter function  (R; S)=R’(R)+(�=2) 1(R) 2(S) depends on the three functions ’,  1,
and  2 given by

’(r) =  1(r)=  2(r)=0 if r60

’(r) =−3r5 + 11r4 − 14r3 + 6r2 + 3;  1(r)=  2(r)=
r3

r3 + (1− r)3
if 06r61

’(r) =  2(r)=1;  1(r)=
1

1 + (r − 1)3 if 16r

The Jacobian matrices of the convective �uxes considered in the Riemann solver are matri-
ces of size d+3. These matrices are straightforward extensions of the ones obtained without
relaxation (and of order d + 2) and are independent of the pressure and temperature laws
retained in the real gas model. The Jacobian matrices and the associated transformation ma-
trices are detailed for two-dimensional �ows in Reference [8]. An alternative approach is
to uncouple the convective �uxes for the energy perturbation �2 from the convective �uxes
for the �ctitious gas. Indeed, �2 is simply convected by the �ctitious gas �ow velocity U
and its convective �ux may be approximated using the numerical scheme described in Ref-
erence [15] and designed to preserve mass fraction positivity in reactive �ow computations.
We have compared numerically both approaches on inviscid shock tube calculations and on
vortex advection by viscous �ows without observing any signi�cant di�erence. The numerical
results presented below are based on the �rst strategy.
Time integration is based on a fourth-order Runge–Kutta scheme. Time steps are evaluated

using a CFL condition extended to the compressible Navier–Stokes equations and depending
on the Reynolds and Prandtl numbers [16]. Unless stated otherwise, a CFL value of 1.5
has been used in the computations discussed below. Boundary conditions arising in our test
problems are either of in�ow=out�ow type or of periodic type. The former are treated using
a Steger–Warming scheme [17]. The latter are implemented upon reconstructing the whole
�nite volume cell across the boundary.

4. RESULTS AND DISCUSSION

In this section, we discuss our numerical results for the three test problems: the advection
of a periodic set of vortices, the interaction between a temperature spot and a weak shock,
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and the interaction between a re�ected shock and the incident boundary layer in a shock
tube. In each case, we �rst assess the accuracy of our numerical methods by comparing the
results predicted by our TPCP Navier–Stokes code with benchmark solutions [9, 10]. We then
investigate the accuracy of the energy relaxation method. All the results reported hereafter as
well as the benchmark solutions correspond to two-dimensional �ow simulations.

4.1. Advection of a periodic set of vortices

The initial condition consists of a periodic set of Taylor vortices superimposed to a uniform
�ow. The carrier gas is air at standard thermodynamic conditions: p0 = 103; 320 Pa, T0 =
300 K and �0 = 1:2 kg=m−3. Since this test problem is practically isothermal, air is assumed
to be TPCP with �=1:4. The advection velocity is initially u0=277:75 m=s, corresponding
to a Mach number of 0.8. The Taylor vortices are initially centred at the vertices of a two-
dimensional, uniform lattice with step L along both Cartesian co-ordinates. The reference
length scale is set to L=1m. The shear viscosity and the thermal conductivity are evaluated
from a Reynolds number of 104 and a Prandtl number of 0.7. The computational domain
is the unit two-dimensional square with periodic boundary conditions imposed on its four
edges. Initially, the vortex is centred at point ( 12 ;

1
2 ) and has a tangential velocity given in

non-dimensional form by

u(r)= c1re−c2r2 (24)

with r2 = (x1 − 1
2 )
2 + (x2 − 1

2 )
2, c1 = (uv=rv)e1=2, c2 = 1=(2r2v ), uv=0:3, and rv=0:075.

We �rst assess the basic dissipative errors of our numerical schemes in the absence of
relaxation. We investigate two �-schemes (�= 1

2 and
1
3) and two triangulations. Both were

obtained from a uniform, quadrangular mesh by splitting the cells along alternating diagonals.
The coarse triangulation (mesh M1) contains 101× 101 nodes and the �ne one (mesh M2)
contains 201× 201 nodes. The reference solution has been obtained in Reference [9] using a
third-order accurate TVD Runge–Kutta method for time integration and a sixth-order accurate
Hermitian scheme for spatial discretization on a uniform, quadrangular mesh with 200× 200
nodes.
Figure 2 presents non-dimensional pro�les for the vertical velocity and the pressure along

the line y= 1
2 at time t5 = 5L=u0, i.e. when the vortex has been advected �ve computational

domains further downstream. As expected, errors on the pressure are larger than those on the
velocity. Mesh re�nement has a more sizeable e�ect on quenching dissipative errors than the
�-scheme. Table I reports relative errors for the maximum vertical velocity and the minimum
pressure in the computational domain at times ti= iL=u0 with 16i65. Note that the minimum
pressure is not monotone in time as also reported in Reference [9]. The overall convergence
order with respect to the benchmark solution is seen to be larger than 2. In addition, on a
given mesh, changing coe�cient � from 1

2 to
1
3 yields a further reduction in the error up to

a factor of 2.
We have also compared the in�uence of the type of triangulation on solution accuracy. In

addition to the structured triangulation with alternate diagonal splitting of the quadrangular
cells, we have considered a structured triangulation with uniform splitting of the cells and a
fully unstructured Delaunay triangulation with 46 569 nodes. The latter yields slightly more
accurate results than the structured mesh with alternate splitting which in turn, yields slightly
more accurate results than the structured mesh with uniform splitting. For instance, relative
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Figure 2. Non-dimensional pro�les for vertical velocity (left) and pressure
(right) along line x2 = 1

2 at time t5 = 5L=u0.

Table I. Relative errors (in %) for the maximum vertical velocity and the minimum pressure
in the computational domain at times ti= iL=u0, 16i65.

Max. vertical velocity t1 t2 t3 t4 t5

Reference value [9] 0.27855 0.26432 0.25060 0.24412 0.23163

�= 1
2–mesh M1 −2:85 −4:97 −7:12 −9:32 −11:96

�= 1
2–mesh M2 −0:06 −0:55 −0:82 −1:32 −1:78

�= 1
3–mesh M1 −2:87 −4:53 −6:25 −8:01 −9:22

�= 1
3–mesh M2 −0:33 −0:62 −0:93 −1:13 −1:25

Min. pressure t1 t2 t3 t4 t5

Reference value [9] 1.01276 1.01789 1.01964 1.08101 1.06052

�= 1
2–mesh M1 0.60 1.24 1.45 0.55 2.08

�= 1
2–mesh M2 0.06 0.22 0.31 −0:05 0.55

�= 1
3–mesh M1 0.48 0.75 0.89 0.75 1.11

�= 1
3–mesh M2 0.05 0.11 0.13 0.10 0.23

errors with respect to the benchmark solution for the maximum vertical velocity at non-
dimensional time t5 are respectively given by −0:78, −1:25, and −1:37%.
We now investigate the dissipative errors induced by the relaxation scheme. To this purpose,

we consider a �ctitious gas with �1 = 1:66. For the sake of brevity, we only discuss the
simulations performed with �= 1

3 on mesh M2. We compare the solutions obtained with and
without relaxation but with the same Navier–Stokes solver so that the errors we report only
contain the dissipative contribution of energy relaxation. Table II presents the relative errors
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Table II. Relative errors (in %) for the maximum vertical velocity and the minimum pres-
sure in the computational domain at times ti= iL=u0, 16i65; comparison of the solutions

obtained with relaxation (�1 = 1:66) and without relaxation.

Relative errors (%) t1 t2 t3 t4 t5

Max. vertical velocity −0:003 −0:037 0.042 −0:127 −0:050
min. pressure 0.004 0.012 −0:025 −0:038 −0:033

for the maximum vertical velocity and the minimum pressure in the computational domain at
times ti= iL=u0 with 16i65. Dissipative errors induced by the relaxation method are seen to
be at least an order of magnitude lower than discretization errors. These results demonstrate
that vortex convection may be accurately predicted by the energy relaxation method.

4.2. Temperature spot=weak shock interaction

We consider a weak shock separating two uniform �ows with the upstream one initially
perturbed by a temperature spot. For this test problem, temperatures vary between 300 and
600K. We assume that the real gas is TP and consider three models for its adiabatic exponent:

[C1] the real gas is actually TPCP with �=1:4;
[C2] �(T ) is given as a second-order polynomial in the temperature

�(T )= aT 2 + bT + c (25)

with coe�cients a=−6:85 10−8 K−2, b=−4:76 10−6 K−1 and c=1:3526 obtained by
�tting experimental values for air between 300 and 600 K;

[C3] �(T ) follows a vibrational law in the form

�(T )=1 +
1

5
2 − ( Tv

T )
2 exp(Tv=T )
(exp(Tv=T )−1)2

(26)

with the vibrational temperature set to Tv=1000 K.

Figure 3 presents the adiabatic exponent as a function of temperature for the polynomial
model (25) and the vibrational model (26).
Left and right states with respect to the shock are indexed, respectively, by L and R, both

consisting of a uniform, horizontal �ow. For the left state, the thermodynamic variables are
given by �L =1:2 kg m

−3, TL =300 K, pL =103; 320 Pa, and the velocity vector by UL =
(uL; 0) where uL is determined by setting the Mach number to M =1:1588. The right state is
then determined by solving the Rankine–Hugoniot conditions

�LuL = �RuR

�Lu2L + pL = �Ru2R + pR

hL + u2L=2= hR + u2R=2

(27)

where h= � + p=� is the speci�c enthalpy. Numerical values are given in Table III for the
three thermodynamic models.
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Figure 3. Adiabatic exponent as a function of temperature (K) for
polynomial model (25) and vibrational model (26).

Table III. Test case 2: initial conditions for the three thermodynamic models.

Model C1 C2 C3

uL (m=s) 402.32 394.35 393.86
uR (m=s) 316.71 308.33 307.23
�R (kgm−3) 1.52 1.53 1.53
pR (Pa) 144 648 144 022 144 263
TR (K) 330.63 326.97 326.75

periodic

periodic

in
fl

ow

ou
tf

lo
w

Figure 4. Initial �ow con�guration for test case 2.

The problem is posed on the domain �= [0; 2L]× [0; L] where L is the reference length. The
shear viscosity and the thermal conductivity are determined by setting the Reynolds number
to Re=2000 and the Prandtl number to Pr=0:7, both numbers being evaluated using the
left state as reference state and a reference length of L=1 m. The initial �ow con�guration
is depicted in Figure 4. In�ow and out�ow conditions are imposed, respectively, on the left
and right boundaries, whereas periodic conditions are considered for the bottom and top ones.
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Figure 5. Time evolution of vorticity integral (left) and baroclinic torque (right) predicted by the
reference solution and our TPCP Navier–Stokes solver on meshes M1 and M2.

The shock is located at non-dimensional co-ordinate x=1. The temperature spot is initially
centred at point ( 12 ;

1
2 ) and is given in non-dimensional form by

	T (x1; x2)=
1
c4
(r2 − c2)2e−r2=�2 (28)

with c=7, �=0:07, and r2 = (x1 − 1
2 )
2 + (x2 − 1

2 )
2. The temperature spot is convected by the

base �ow and starts interacting with the weak shock at non-dimensional time t∗=(u1=L)t ≈ 1
2 .

The main physical process at play is the creation of vorticity through the baroclinic torque
−(1=�2)∇p× ∇�. Such process is important for instance when modelling turbulence creation
inside a combustion chamber.
We �rst assess numerical errors in the absence of relaxation. We compare the results

produced by our TPCP Navier–Stokes solver with the benchmark solution reported in Ref-
erence [9]. The latter was obtained using the time and space discretization described in the
previous section on a uniform, quadrangular mesh containing 801× 101 nodes. Our numerical
results have been obtained using the �-scheme with �= 1

3 on two triangulations constructed
from a uniform, quadrangular mesh with cells split along alternating diagonals. The coarse
one (mesh M1) contains 201× 101 nodes and the �ne one (mesh M2) contains as many
nodes as the benchmark mesh. Figure 5 displays the time evolution of the integrals∫

�
|!| d� and

∫
�

1
�2

|∇p× ∇�| d� (29)

where != @1u2 − @2u1 is the vorticity and U =(u1; u2) the two-dimensional velocity vector.
No vorticity is initially present in the �ow. Vorticity production through the baroclinic torque
peaks at t∗ ≈ 0:5 when the centre of the vortex is located at the shock, and most of the
vorticity has been generated at t∗ ≈ 0:6. Our numerical results compare very well with the
reference solution, with those on the �ner mesh yielding excellent agreement.
We have also compared our numerical solutions obtained on three types of meshes, all

containing approximately the same number of nodes: two triangulations obtained by splitting
either along alternate or uniform diagonals the cells of a uniform, quadrangular mesh and a
fully unstructured Delaunay triangulation. Excellent agreement is achieved between the results
obtained on the alternate mesh and the unstructured one. On the other hand, uniform cell
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Table IV. Maximum vorticity at time t2 obtained with the TPCP Navier–Stokes and the relaxation
solvers on meshes M1 and M2; relative error (in %) with respect to the reference solution.

Scheme Maximum of ! Relative error

TPCP NS M1 0.97675 −6:58
TPCP Relax. M1 1.00475 −3:90
TPCP NS M2 1.01816 −2:62
TPCP Relax. M2 1.01647 −2:78

Table V. Relative error (in %) with respect to the reference solution for the vorticity integral at various
non-dimensional times: TPCP Navier–Stokes solver (line 1) and relaxation method (line 2).

Non-dimensional time 0.25 0.5 0.75 1.0

TPCP NS (%) −1:25 −1:35 −1:50 −0:97
Relaxation (%) −2:44 −1:38 −1:65 −1:10

splitting leads to a much lower accuracy as far as vorticity production is concerned, with
major discrepancies occurring before the temperature spot reaches the shock. Such meshes
therefore require a much higher level of re�nement to yield accuracies similar to the other
types of meshes and will not be further considered.
We now investigate the accuracy and stability of the relaxation method. We �rst consider

model C1 and set the adiabatic exponent of the �ctitious gas to �1 = 1:66 in agreement with
the subcharacteristic condition (11). Figure 6 presents density and vorticity isocontours for
non-dimensional times t1 = 1

2 and t2 = 1 as predicted by the relaxation method and the TPCP
Navier–Stokes solver on mesh M2. Excellent agreement is achieved. Table IV presents the
values of the maximum vorticity at time t2 for the two methods on the two meshes as well as
the relative error (in %) with respect to the reference solution. On the �ner mesh, the results
are quite satisfactory and show in particular that the error due to the relaxation method is much
smaller than that due to discretization. On the coarse mesh, the error due to discretization
is too large to assess the error due to relaxation. Table V presents relative errors (in %) on
the vorticity integral at non-dimensional times t∗=0:25, 0.5, 0.75, and 1. Errors between the
TPCP Navier–Stokes solver and the reference solution are very close to those obtained with
the relaxation method, con�rming that the dissipative errors induced by energy relaxation are
much smaller than those induced by the discretization. Despite the presence of some vorticity
in the shock at time t2, both the Navier–Stokes solver and the relaxation method slightly
underestimate the total vorticity. This results from the fact that in both cases, slightly lower
values for the maximum vorticity are obtained.
We next consider the thermodynamic models C2 and C3 in which the adiabatic exponent

is a non-linear function of the temperature. The adiabatic exponent of the �ctitious gas is
set to �1 = 1:38 in agreement with the subcharacteristic condition (11) (see Figure 3). We
compare our numerical results with those obtained from an extended Navier–Stokes code
in which the Riemann solver is modi�ed to account for the temperature dependency of the
adiabatic exponent, i.e. in which the Jacobian matrices associated with convective �uxes are
modi�ed to include the correct values of pressure derivatives. In the Roe scheme, the mean
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Figure 6. Comparison of density and vorticity isocontours as predicted by the TPCP Navier–Stokes
solver (left column) and the relaxation method (right column): � at time t1 (top line); ! at time t1

(second line); � at time t2 (third line); ! at time t2 (bottom line.)

values of these matrices then depend on mean values of the temperature and the adiabatic
exponent. Figure 7 displays density pro�les along line x2 = 1

2 for non-dimensional times t1 =
1
2

and t2 = 1 obtained on meshes M1 and M2 for thermodynamic model C2. Excellent agreement
between the energy relaxation method and the extended Navier–Stokes solver is obtained on
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Figure 7. Density pro�les along line x2 = 1
2 for non-dimensional times t1 = 1

2 (top) and t2 = 1
(bottom) predicted by the extended Navier–Stokes solver and the relaxation method. Thermo-

dynamic model C2. Left: mesh M1. Right: mesh M2.

Table VI. CPU times obtained with the relaxation method normalized by those obtained
with the extended Navier–Stokes solver.

Time step CFL=1:5 	t=0:15× 10−5

Model C2 C3 C2 C3

Relative CPU 1.14 1.04 1.21 1.09

both meshes, with minor di�erences (of the order of a few percent) only occurring at the core
of the temperature spot. Similar results are obtained for model C3. These results con�rm the
ability of the energy relaxation method to predict accurately the dynamics of non-isothermal
�ows with moderate temperature gradients.
We conclude this section with a brief assessment of computational times. Table VI reports

CPU times obtained with the energy relaxation method normalized by those obtained with
the extended Navier–Stokes code. Computations are performed for the �-scheme with �= 1

3
on mesh M2. We consider the real gas models C2 and C3. In the �rst two columns of
Table VI, the time step is adjusted adaptively based on a CFL condition. Since the
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relaxation method uses the (higher) sound speed of the �ctitious gas, this yields a more
stringent CFL condition for the energy relaxation method and thus a larger number of time
steps. A second set of comparisons is performed by keeping the time step constant at the value
of 	t=0:15× 10−5. Both sets of comparisons yield similar results. The overhead incurred by
the relaxation method ranges between 10 and 20% for the polynomial model C2 and between
4 and 9% for the vibrational model C3. The computational overhead is less important for the
latter model because the extended convective �ux solver is more expensive. Indeed, in model
C3, the energy law � := �(T ) cannot be explicitly inverted, requiring an iterative procedure
each time a temperature is evaluated. Although the convergence rate is extremely fast (one
or two iterations typically), this su�ces to impact the cost of the extended Navier–Stokes
code.

4.3. Re�ected shock=boundary layer interaction

We consider a square shock tube with insulated walls and unit side length. A diaphragm
is located in the middle of the tube (x1 = 0:5), separating two uniform states indexed by L
(left state) and R (right state). The right state corresponds to air at standard thermodynamic
conditions. The left state is given by �L=�R =pL=pR =100 and TL =TR. To begin with, we
assume that the gas inside the shock tube is TPCP with �=1:4. The shear viscosity and
the thermal conductivity are evaluated from a Reynolds number of either 200 or 1000 and
a Prandtl number of 0.7. It is worthwhile to point out that this test case is strongly non-
isothermal with temperatures ranging from 300 K up to 2000 K.
At the initial time, the diaphragm is broken. In the inviscid case, a shock wave with

Mach number 2.37 moves to the right and is followed by a contact discontinuity. At non-
dimensional time t∗ ≈ 0:2, the shock wave is re�ected at the right wall and interacts with
the contact discontinuity, yielding complex �ow dynamics. The contact discontinuity stays
stationary in the vicinity of the right wall. The re�ected shock starts interacting with the
trailing rarefaction wave centred at x1 = 0:5 at non-dimensional time t∗ ≈ 0:4. In the viscous
case, the shock wave and the contact discontinuity generate a thin boundary layer in the
vicinity of the horizontal wall of the tube as they propagate to the right. After being re�ected,
the shock wave interacts with the boundary layer yielding complex �ow patterns with vortex
generation. A more thorough discussion of physical aspects is given in Reference [10]. For
Re=200, reference solutions have been obtained in Reference [10] and more recently in
Reference [18]. For Re=1000, it is not certain that the �ow is stable, but the test case is of
interest to compare our results with those presented in References [10, 18].
Owing to the symmetry with respect to the line located at x2 = 0:5, we reduce the computa-

tional domain to �= (0; 1)× (0; 0:5). Symmetry conditions are enforced on the top boundary
while no-slip, adiabatic conditions are enforced elsewhere. We consider three triangulations
obtained by splitting along alternate diagonals the cells of uniform, quadrangular meshes. The
coarsest mesh (mesh M1) contains 501× 251 nodes, the middle one (mesh M2) 1001× 501
nodes, and the �nest one (mesh M3) 1501× 751 nodes. Meshes M1 and M2 are used for
the Re=200 computations and meshes M2 and M3 for the Re=1000 computations. We con-
sider the two high-order limiter functions described in Section 3 [14] and yielding third- and
fourth-order accuracy, at least away from discontinuities. The CFL is linearly increased in
time from an initial value of 0.2 up to 1.5. We �rst discuss our results for Re=200 and then
for Re=1000.
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Figure 8. Density isocontours at non-dimensional time t∗=1 for Re=200. Top, left: reference solution.
Top, right: third-order limiter on mesh M1. Bottom, left: fourth-order limiter on mesh M1. Bottom,

right: fourth-order limiter on mesh M2. The plotting domain is (0:3; 1)× (0; 0:4).

For Re=200, we use as a reference solution the one obtained in Reference [10] with a
third-order Runge–Kutta method for time integration, a second-order TVD scheme for spatial
discretization [19], the Van Leer harmonic limiter function, and a uniform, quadrangular mesh
containing 1000× 500 nodes. Other numerical schemes are also investigated in Reference [10],
which are equivalent for our validation purposes. Figure 8 presents isocontours for the density
at non-dimensional time t∗=1 obtained with the two limiter functions and meshes M1 and
M2. A comparison with the benchmark solution shows that in all cases the key features of
the �ow dynamics generated by the interaction of the shock wave and the boundary layer
are captured. Large vortices are generated in the boundary layer bubble resulting from the
pressure di�erence between the stagnation pressure in the boundary layer and that of the
out�ow region. The third-order limiter function yields spurious oscillations behind the shock
wave. Such oscillations are wiped out by the fourth-order limiter function. Independently from
the limiter function, we also observe that for mesh M1, the main vortex behind the �-shaped
shock wave is slightly more bent to the right whereas for mesh M2, the calculations agree
well with the reference solution.
Turning to the accuracy and stability of the relaxation method, we �rst consider the case

where the real gas is still TPCP, and the �ctitious gas is also TPCP with �1 = 1:66. In
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Figure 9. Density and Mach number pro�les at non-dimensional time t∗=1 for Re=200 predicted
by the TPCP Navier–Stokes solver and the energy relaxation method on mesh M2: density along line

x2 = 0 (left); density along line x2 = 0:3 (middle); Mach number along line x2 = 0:01 (right.)
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Figure 10. Density and Mach number pro�les at non-dimensional time t∗=1 for Re=200 obtained
with the TPCP gas model and the vibrational model on mesh M2 (the same non-dimensionalization
is used for both calculations): density along line x2 = 0 (left); density along line x2 = 0:3 (middle);

Mach number along line x2 = 0:01 (right.)

order to minimize discretization errors, comparisons are made with the solutions predicted on
mesh M2 with the fourth-order limiter function. Figure 9 presents density and Mach number
pro�les along various horizontal lines at non-dimensional time t∗=1. Pro�les obtained with
and without relaxation overlap, con�rming the accuracy of the relaxation method.
We next investigate the case where the adiabatic exponent is temperature dependent and

follows the vibrational model (26). Because of the strong temperature variations present in
the �ow, non-linearities arising in the adiabatic exponent yield a sizeable impact on the �ow
dynamics. Vibrational e�ects mainly result from the dependency of the sound speed on the
adiabatic exponent and are illustrated in Figure 10 where density and Mach number pro�les
are presented at non-dimensional time t∗=1. Numerical results are obtained with the extended
Navier–Stokes code. Vibrational e�ects have a strong impact on the �ow temperature which
now varies between 425 and 1676 K. Turning to the accuracy and stability of the energy
relaxation method for gas �ows with vibrational e�ects, we compare the results obtained
with the extended Navier–Stokes code to those delivered by the relaxation method. Figure
11 presents density and Mach number pro�les at non-dimensional time t∗=1. The agreement
appears to be excellent. The relaxation method thus captures the correct �ow dynamics al-
though the �ctitious gas alone would yield signi�cantly di�erent �ow patterns. The accuracy
of the relaxation method is further con�rmed in Figure 12 which presents density isocontours
at non-dimensional time t∗=1. Note that the shape of the main vortex is signi�cantly di�erent
from that obtained with the TPCP gas model (Figure 8).
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Figure 11. Density and Mach number pro�les at non-dimensional time t∗=1 for Re=200 obtained
on mesh M2 for the vibrational model C3 using the energy relaxation method and the
extended Navier–Stokes solver: density along line x2 = 0 (left); density along line x2 = 0:3 (middle);

Mach number along line x2 = 0:01 (right.)

Figure 12. Density isocontours for vibrational model C3 at non-dimensional time t∗=1 for Re=200
obtained on mesh M2 with the extended Navier–Stokes code (left) and the energy relaxation method

(right); plotting domain as in Figure 8.

Finally, we investigate the case Re=1000. For such Reynolds number, vortical structures
become extremely complex. Small vortices are generated just downstream of the bound-
ary layer separation, and shocklets are present at many locations inside the large vortices.
Figure 13 presents density isocontours at non-dimensional time t∗=1 predicted for a TPCP
gas on mesh M3 with and without relaxation. The �ow patterns are extremely close, con-
�rming that also at high Reynolds numbers, the errors induced by the relaxation method are
marginal with respect to those caused by discretization. Our results also agree reasonably
well with those reported by Daru and Tenaud [10] using a 2000× 1000 mesh and those of
Sj
ogreen and Yee [18] using a 4000× 2000 mesh. Except for some �ne scale vortices (e.g.
those located in the layer at x1 = 0:9), the global structure of the �ow is well represented.
More importantly for our purposes, the errors induced by the relaxation method do not come
into play. This conclusion is further con�rmed in Figure 14 where density pro�les along
the bottom wall at non-dimensional time t∗=1 are presented. Grid resolution clearly has an
impact on the pro�les, while the energy relaxation method does not yield any signi�cant error.
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Figure 13. Density isocontours for a TPCP gas at non-dimensional time t∗=1 for Re=1000 ob-
tained on mesh M3 with the TPCP Navier–Stokes code (left) and the energy relaxation method

(right); plotting domain as in Figure 8.
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Figure 14. Density pro�les along bottom wall at non-dimensional time t∗=1 for Re=1000 obtained
on mesh M3 with the TPCP Navier–Stokes code and the energy relaxation method.

5. CONCLUSIONS

In this paper, we have evaluated numerically a new energy relaxation method for the simu-
lation of unsteady, viscous, thermically perfect but calori�cally imperfect gas �ows governed
by the compressible Navier–Stokes equations. We have investigated three test problems of
increasing di�culty: the isothermal advection of a periodic set of vortices in order to assess
the basic dissipative errors, the interaction of a temperature spot with a weak shock in order
to validate the splitting of the heat �ux vector in a test case where non-linearities in the
adiabatic exponent have a moderate impact on the �ow dynamics, and �nally, the interaction
of a re�ected shock with its trailing boundary layer in order to assess the capability of the
energy relaxation method to tackle complex �ow dynamics. Our results have been compared
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to benchmark solutions and numerical errors due to both discretization and energy relaxation
have been assessed independently. In all cases, the energy relaxation method is able to pre-
dict accurately the �ow dynamics, while inducing only marginal overheads in computational
times. Future work includes the evaluation of the energy relaxation method on wall heat trans-
fer problems and on gas �ows governed by thermodynamic models that involve additional
non-linearities with respect to the TP gas model.
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